CHIP enhances angiogenesis and restores cardiac function after infarction in transgenic mice.

نویسندگان

  • Cheng-Wei Xu
  • Tian-Peng Zhang
  • Hong-Xia Wang
  • Hui Yang
  • Hui-Hua Li
چکیده

BACKGROUND Carboxyl terminus of Hsp70-interacting protein (CHIP) is a chaperone/ubiquitin ligase that plays an important role in stress-induced apoptosis. However, the effect of CHIP on angiogenesis, cardiac function and survival 4 weeks after myocardial infarction (MI) remain to be explored. METHODS Wild-type (WT) and transgenic mice (TG) with cardiac-specific overexpression of CHIP were used for coronary artery ligation. The cardiac function, cardiomyocyte apoptosis, inflammation and angiogenesis were examined by echocardiography, histological analysis, real-time PCR and Western blot analysis. RESULTS At 4 weeks of after coronary artery ligation, echocardiography demonstrated that cardiac remodeling and dysfunction were prevented in TG mice compared with WT mice. The infarct size, cardiomyocyte apoptosis and inflammation were significantly reduced in TG mice than in WT mice. The survival rate after MI in TG mice was higher than that of WT mice. Furthermore, the levels of p53 protein was markedly decreased, but the expression of HIF-1α and VEGF, and the formation of capillary and arteriole after MI were significantly enhanced in TG mice compared with WT mice. CONCLUSION We report the first in vivo evidence that CHIP enhances angiogenesis, inhibits inflammation, restores cardiac function, and improves survival at 4 weeks after MI. The present study expands on previous results and defines a novel mechanism. Thus, increased CHIP level may provide a novel therapeutic approach for left ventricular dysfunction after MI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-mobility group box 1 restores cardiac function after myocardial infarction in transgenic mice.

AIMS High-mobility group box 1 (HMGB1) is a nuclear DNA-binding protein and is released from necrotic cells, inducing inflammatory responses and promoting tissue repair and angiogenesis. To test the hypothesis that HMGB1 enhances angiogenesis and restores cardiac function after myocardial infarction (MI), we generated transgenic mice with cardiac-specific overexpression of HMGB1 (HMGB1-Tg) usin...

متن کامل

OSM Enhances Angiogenesis and Improves Cardiac Function after Myocardial Infarction

Oncostatin M (OSM) has been reported to stimulate angiogenesis by upregulating VEGF and bFGF, implying that it could be a therapeutic strategy in treating ischemic diseases. The present study was aimed at investigating whether OSM could improve cardiac function via prompting angiogenesis following myocardial infarction (MI). Wild type (WT) and Oβ knock-out (Oβ (-/-)) mice were, respectively, ra...

متن کامل

TPPU enhanced exercise‐induced epoxyeicosatrienoic acid concentrations to exert cardioprotection in mice after myocardial infarction

Exercise training (ET) is a safe and efficacious therapeutic approach for myocardial infarction (MI). Given the numerous benefits of exercise, exercise-induced mediators may be promising treatment targets for MI. C57BL/6 mice were fed 1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl) urea (TPPU), a novel soluble epoxide hydrolase inhibitor (sEHI), to increase epoxyeicosatrienoic acid (EET...

متن کامل

Therapeutic angiogenesis promotes efficacy of human umbilical cord matrix stem cell transplantation in cardiac repair

Objective(s):Although previous studies have confirmed the beneficial effects of human umbilical cord matrix stem cell (hUCM) transplantation post myocardial infarction (MI), but this stem cell resource has no potential to induce angiogenesis. In order to achieve the process of angiogenesis and cardiomyocyte regeneration, two required factors for cardiac repair agents were examined namely; hUCM ...

متن کامل

Chronic Akt1 deficiency attenuates adverse remodeling and enhances angiogenesis after myocardial infarction.

BACKGROUND Akt1 is a key signaling molecule in multiple cell types, including endothelial cells. Accordingly, Akt1 was proposed as a therapeutic target for ischemic injury in the context of myocardial infarction (MI). The aim of this study was to use multimodal in vivo imaging to investigate the impact of systemic Akt1 deficiency on cardiac function and angiogenesis before and after MI. METHO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 31 2-3  شماره 

صفحات  -

تاریخ انتشار 2013